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Abstract

The involvement of microorganisms in infection is often deduced from their presence during disease and
absence in healthy humans or animals, which is an oversimplification. The proof of direct involvement is
decisive. Fluorescence in situ hybridization (FISH) combines the specific identification of microorganisms
and the morphological aspect of the host tissues and is as a consequence especially helpful for these
purposes.
The present manuscript describes FISH methods which we use in ambulatory patients for Polymicrobial

Infections and Bacterial Biofilms of the Charité Hospital to visualize pathogens (pathogenic consortia) in
clinical samples.

Keywords Polymicrobial infections, Pathogenic consortia, FISH

1 Introduction

The contemporary understanding of infections is based on identi-
fying microorganisms in diseased persons that are absent in healthy
persons. However, the presence of a bacterium (or bacteria) in
health does not mean that it is healthy or at least harmless (chapter
by Benedetta Bottari et al. “FISHing for Food Microorganisms”).

Neisseria meningitidis is part of the normal nonpathogenic
flora in the nasopharynx of up to 5–15 % of adults. Its causative
involvement in meningitis is however beyond doubt, since it is the
only bacterium found in the inflamed cerebrospinal fluid.

Detecting bacteria at the site of an infection is more appropriate
for identifying the infectious agent than its absence within normal
colonization. Difficulties arise when multiple organisms are present
at the infection site. In this case, the criminological experiment is
decisive. A transfection of the suspected bacteria to healthy animals
helps to uncover potential pathogens.
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However, when none of the involved microorganism causes
infection, does this exclude the harmful potential of a group? No.

A well-known example is the induction of Vincent’s angina by
Rosebury, who transferred plaque-infected material holding differ-
ent components [1]. While single microorganisms were innocuous
and incapable to initiate infection, it was possible to cause disease
with the combination of different species. The required consortium
was called the “Pathogenic Quartet” and included the following
species that were isolated from a patient diagnosed with Vincent’s
angina: a spirochete, a fusiform Bacillus, a Vibrio, and an anaerobic
Streptococcus. Rosebury’s conclusion was that each of these species
is a member of healthy indigenous flora, but they may cooperate
and form an unmanageable complex structure.

In nature, microorganisms build diverse consortia in which
single participants complement each other and display specific
properties, which cannot be discovered in one of the participants
or in other associations. Can some of these consortia be patho-
genic? Yes.

We should await the presence of such consortia on surfaces
which contact the outer world such as the skin, mouth, intestine,
vagina, etc.

Can the role of these consortia be proved in transfection experi-
ments? Presently, no.

Rosebury transfected not really a consortia but a mix of isolated
cultured single strains. This should be only in exceptional cases
successful. The problem is that until now, we are unable to cultivate
polymicrobials. When more than three bacterial strains are incu-
bated in the same culture, their growth is getting unpredictable,
and one of the strains suppresses and overgrows the others. Poly-
microbial culture is a challenge for future research.

In the absence of polymicrobial cultures, a link between the
consortium of distinct species and their involvement in disease can
be established directly by visualizing pathogenic consortia within
biofilms and microbial infiltrates in host tissues via fluorescence in
situ hybridization (FISH).

We have successfully used this approach in case of colonic
cancer [2], inflammatory bowel disease [3], gallstones [4], tonsilli-
tis [5], appendicitis [6], bacterial vaginosis [7], candidiasis [8], and
urethritis [9].

FISH combines the specific identification of microorganisms
and the morphological aspect and is especially helpful for identifi-
cation of polymicrobial consortia involved in local infection. Each
single bacterium possesses 103–105 ribosomes of which each ribo-
some owns the same copy of ribosomal RNA. Some of the regions
of the rRNA are strain-specific; others are universal for species,
families, or even kingdoms. Oligonucleotides synthesized compli-
mentary to rRNA sequences and labeled with fluorescent dye are
called FISH probes. When added to samples containing bacteria,
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FISH probes hybridize with the rRNA of the bacterial ribosomes.
No additional enhancement of fluorescence is necessary and bacte-
ria can be visualized directly with a fluorescence microscope due to
the large number of ribosomes in each bacterium.

Multicolor FISH enables the identification of potentially all
bacterial groups in spatial relation to each other and in relation to
histological structures of the host. Any biological material can be
studied for in situ presence of bacteria and bacterial biofilms,
including smears from tonsils or vagina, desquamated epithelial
cells in the urine, tissue biopsies, surgically removed tissues, saliva,
perspiration, exudation, sperm samples, and medical devices
removed from the body (Figs. 1, 2, 3).

FISH protocols described here are standard protocols, which
are used for ambulatory patients in the Laboratory for Molecular
Genetics, Polymicrobial Infections, and Bacterial Biofilms at the
Charité Hospital in Berlin, Germany.

2 Materials

Apart from standard cell biological and molecular cytogenetic
equipment, including standard solutions (e.g., ethanol, methanol,
formamide, formaldehyde, xylene, etc.), no more specialized items

Fig. 1 Isolated islands of bacteria attached to desquamated epithelial cells �1,000: mouth and surgically

removed material; universal bacterial probes (Eub338 FITC, green fluorescence), and Burkholderia (Burkho-

Cy3, yellow fluorescence) on the left. Unspecific DAPI stain of the DNA is overlaid with Burkholderia

fluorescence on the right
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are required. The equipment needed for FISH is listed in the
chapter by Thomas Liehr et al. “The Standard FISH Procedure”.

However, skilled laboratory staff with experience in FISH
microscopy is necessary for performing this protocol. Although
the techniques applied here do basically not differ from those
used by pathologists, they cannot be delegated to the staff of the
routine pathology department, because the preparation of tissue
sections is performed with no regard to possible microbiological
cross contaminations, and bacteria are massively present in the
environment. This contamination is easily avoided when materials
in which single steps are performed are renewed after each sample,
and instruments are kept clean and are often changed.

In addition, a routine pathologic laboratory uses automatic
equipment, vessels, and containers in which large parts of sterile
and highly contaminated samples are processed simultaneously,
leading to enrichment of bacteria in solutions, massive microbial
cross contamination, and diagnostic biases.

Fig. 2 Multicolor FISH of superficial tonsils infiltrates �400. Gamma proteobacteria as a part of superficial

infiltrate (Gam42-Cy5, red fluorescence). The main group involved in infiltration is a Fusobacterium nucleatum

(Fnuc Cy3, yellow fluorescence)
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3 Methods

Bacteria-specific FISH probes are inexpensive and can be purchased
from many oligonucleotide manufacturers (such as MWG Biotech,
Ebersberg, Germany). A probe purchased for 50 € is sufficient for

Fig. 3 Prolific bacterial biofilm covers the colonic mucosa in a patient with

Crohn’s disease �1000 multicolor FISH: (a) DAPI stain of DNA structures; (b)

Bac303 Cy3; Bacteroides; orange fluorescence; (c) EREC Cy5; Eubacterium

rectale; and red fluorescence
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3.1 Ribosomal

RNA-Based FISH for

Evaluation of

Polymicrobial

Consortia in Clinical

Settings

3.1.1 Bacteria-Specific

FISH Probes

at least 5,000 hybridizations. Over 200 FISH probes targeting the
bacterial rRNA at a domain, group, and species level are described
in the literature and can be freely accessed online over resources like
www.microbial-ecology.net/probebase and www.arb-silva.de/fish-
probes. New probes can be developed in case of specific clinical
questions.

Probes routinely used for evaluation of intestinal samples in
clinical settings are Bac 303, EREC, Fprau, Bif 153, and EBAC
representing Bacteroides/Prevotella and Enterobacteriaceae.

Probes routinely used for evaluation of urogenital samples in
clinical settings are GardV, Lab, Ato, Cor, EBAC, and EUB338
probes representing Gardnerella, Lactobacillus, Atopobium, Corio-
bacterium, Enterobacteriaceae, and Eubacteria, respectively (see
Notes 1 and 2).

The choice of FISH probes must be adjusted to the specific
requirements of the biotope and the aims of the research. Probes
which deliver unsure results in the microbiome should be avoided
(see Notes 1–3).

FISH is an excellent tool for the assessment of spatial structure.
However, results must be interpreted carefully. In case FISH probes
seem to detect bacterial groups that were never described in the
specific biotope or anatomical location even in case of an apparent
high specificity of the probes, the presence of these groups must be
confirmed using alternative methods such as culturing, polymerase
chain reaction with subsequent cloning, and sequencing.

When using multicolor FISH, a large variation in practicable
fluorochromes exists, but only four of them can be error-free dis-
criminated by the human eye regardless of all possible nuances of
color shades. The four colors used on a regular basis are orange,
dark red, green, and blue represented by carbocyanine (Cy) 3, Cy5,
fluorescein isothiocyanate (FITC), and 40,6-diamidino-2-phenylin-
dole (DAPI) as counterstain, respectively. The advantages of these
appropriate fluorochromes are the slow bleaching, demonstrating
little autofluorescent background and allowing high-quality micro-
graphs. Cy3 is most resilient to bleaching, followed by Cy5 and
FITC. Alexa fluorochromes corresponding to Cy3, Cy5, FITC, and
DAPI are likewise practicable but about ten times as expensive as Cy
fluorochromes (chapter by Michael Sommerauer et al. “Optical
Filters and Light Sources for FISH”).

In our experience with other than the abovementioned fluor-
ochromes, there was a massive increase of signals which could not
be definitively assigned to bacteria.

3.2 Optimally Fixated

Material

Paraffin embedding and preparation of histological sections is the
only time-consuming and elaborate step leading to additional costs
for personal. Optimal materials to perform FISH are biopsies;
eluates from swabs; urine sediments; surgically removed tissues;
sections of nylon-membrane strips placed into the oral cavity or
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prepuce/vagina or attached to skin overnight; and sections of
adhesive tape attached to the anal region and removed after 60 s.
Smears on glass slides are less appropriate since the arrangement of
cells on each slide is artificial and unique. Hybridizations of the
same sample performed under the exact same conditions using
different bacterial FISH probes on different glass slides are not
quantitatively comparable.

3.2.1 General Rules to

Avoid Biases

In aqueous solutions, the DNA is unstable, leading to a decreased
intensity of specific hybridization signals and increased background
fluorescence. To achieve optimal relation between high-specific
bacterial and low-background fluorescence, we recommend the
following:

l Do not use formalin/paraformaldehyde fixation, but rather use
water-free modified Carnoy’s solution.

l Do not use any technique of freezing while preserving samples.
Freezing and thawing are deleterious for many microorganisms
and especially for biofilm structures.

l Shorten the exposure to water containing solutions to the abso-
lute minimum; drop all rehydration steps which are often used in
histology.

l Hold hybridization time as short as necessary (30–90 min
depending on material). With longer exposure, bacteria may
detach from their original place and spread over the surface of
histological cuts, leading to contaminations of sterile locations.

l Use polypropylene tubes (e.g., 2 ml Eppendorf tube, 15–50 ml
Falcon tube) because polypropylene is resistant to Carnoy.

3.2.2 Collecting,

Fixating, Transporting,

and Embedding of Samples

Different fixatives were tested, and the best results were achieved
with modified nonaqueous Carnoy’s solution composed of 6/6/1
vol. ethanol/glacial acetic acid/chloroform.

For Tissue Biopsies and Surgically Removed Material

1. Samples of human tissue can be directly placed in a modified
Carnoy fixative and stored or shipped at room temperature
(RT) to the laboratory. All mechanic pressure (flattening the
sample or the use of a shaker) should be avoided because it may
injure the biofilm structure. The amount of modified Carnoy’s
solution should exceed the volume of tissue sample by a factor
of 20 (Table 1; see Note 4).

2. The minimal incubation time for biopsies in Carnoy fixative is
12 h but preferably at least 24 h. In case of larger tissue pieces,
prolong the incubation time for 4 h for each additional milli-
meter of the tissue size. If the added Carnoy fixative is less than
ten times the tissue/sample volume, the storage should not
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exceed 2 weeks. In case of excess of Carnoy (more than 20-
fold), excellent results could still be obtained after storage for 6
months and probably longer.

3. A change of Carnoy by longer storage time is preferable.

4. After decanting the modified Carnoy solution, the same vol-
ume of ethanol (absolute) is added, and the sample is incubated
at 4 �C for a time period based on the size of the sample. Biopsy
samples up to 3 mm are incubated for 15 min and big tissue
samples (4–20 mm) for 2 h (see Notes 5–6).

5. After cold incubation, the ethanol is poured, and the tissue is
put very carefully—without squeezing—into a new tube with
ca. 5 ml of xylene (p.a.) and incubated overnight at RT.

6. When the xylene is decanted the following day, the sample is
transferred carefully in an embedding mold with pre-warmed,
melted paraffin. When the samples are larger than 5 mm, they
are first put on a paper towel for 10 min to achieve the evapo-
ration of the xylene before putting the sample into the paraffin.
Small samples (<3 mm) are incubated for 1 h at 75 �C, samples
up to 10 mm for 2 h at 75 �C, and large samples (10–20 mm)
overnight at 65 �C.

7. After this first incubation, the paraffin is disposed and fresh
paraffin is added and incubated for 2 h. This step is not neces-
sary for small samples. After this, the mold is taken out of the
incubator and placed on ice. The sample is positioned in the
middle of the mold by using a toothpick. While the paraffin is
coagulating, a pre-identified embedding cassette is put on top
of the mold. Some warm paraffin is poured on this cassette to
connect with the mold. These molds are first stored at 4 �C
during 15 min followed by storage at �20 �C for at least 15
min. After complete coagulation of the paraffin, 4 μm cut
sections can be made and put on a glass slide (Superfrost Plus
slide) used for histological research. These slides are incubated
for 1 h at 50 �C to assure the connection between the cut
section and the slide.

8. The deparaffinization of the slides is obtained by putting them
four times for 2–3 min each time at RT first in successive xylene

Table 1

Amount of Carnoy depending on the sample size

Sample size (mm3) Volume of Carnoy (ml)

1 0.5

5 5

6–20 15
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(p.a.) baths and next in successive ethanol (absolute) baths. The
slides are incubated for 25 min at 50 �C. The sections are
encircled with a thin line with the pap pen and dried.

9. A lysozyme step (Carl Roth, Germany) is only necessary for
some strains of mainly gram-positive bacteria (depending on
the probe). The entire section is covered by lysozyme solution
(1 mg ml�1) and incubated at 37 �C for 15–90 min in a humid
pre-warmed chamber (depending on the sample). The optimal
time has to be evaluated for each kind of sample. The lysozyme
can introduce biases in polymicrobial communities by destroy-
ing, for example, Proteobacteria completely. It is important to
obtain the best results in regard to the specific target species
and other bacterial groups.

10. After incubation, the slides are flushed with distilled water and
dried for 5 min at 50 �C.

For Fluid Secretions, Lavage, and Urine

1. Fluid secretions and lavages are done by MDs. The collection
and fixation of urine samples is performed by the patient.
Women are asked not to wash the urogenital region in the
evening before sample collection and to use the first part of
the morning urine, which increases the number of desqua-
mated epithelial cells in urine sediments. Men need to pull
the foreskin back over the glans penis before urine collection.

2. Two milliliters of the liquid sample are mixed with 8 ml Carnoy
fixative in 15 ml Falcon tubes. These samples are not stable due
to the high water amount. Therefore, the time for delivery to
the laboratory should not exceed 4 weeks. Shorter periods are
preferable. At arrival in the laboratory, fixated fluids and secre-
tions should be centrifuged and the fixative solution decanted.
Then Carnoy fixative is added to the sediment in a proportion
of at least 1:20. Such prepared sediments can be stored until 6
months at RT.

3. Then there is a 1 cm circle drawn with a pap pen on the
Superfrost Plus glass slide. Then 5 μl of the stirred sample is
transferred to the slide with a plastic pipette within the area of
hybridization and dried at 50 �C for 30 min. 5 μl of the final
aliquot are convenient to use for single hybridizations. In case
of urine sediments fixated as described above, this volume
represents 30 μl of the initial urine volume.

3.3 The Hybridization The hybridization of slides from tissues and fluids follows the same
protocol.

1. A hybridization solution (Table 2) is prepared, in which the
amount of formamide varies depending on the FISH probe.
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2. This solution is pre-warmed at 46 �C (or the probe-specific
hybridization temperature; see Note 7), and 0.5 μl of probe
(50 ng μl�1) is added to 50 μl of hybridization buffer (per
sample section). This amount of hybridization buffer is enough
to cover the section completely.

3. The section is incubated for 45 min to 3 h at 46 �C in a humid
pre-warmed chamber and in the dark. The incubation time
should be optimized for different bacterial groups.

4. Wash buffer (Table 3) is prepared and warmed at 48 �C during
this incubation period. The wash buffer composition depends
on the formamide concentration used for hybridization.

5. After incubation, the slides are flushed with distilled water, and
two slides are put back-to-back in a 50 ml Falcon tube
completely filled with the pre-warmed wash buffer.

6. The tubes are incubated in a 48 �C water bath for 5 min; then
they are flushed with distilled water.

7. The slides are dried in an upright position in an oven at 50 �C
for 5 min in the dark.

8. Sections are placed in a cardboard slide folder, covered with 50
μl DAPI solution (1 μg ml�1), and incubated for 5–10 min at
RT in the dark.

Table 2

Composition of hybridization solutions

% of formamide Formamide (μl) H2O (μl) NaCl 5M (μl) Tris-HCl 1M (pH 7.4) (μl) SDS 10 % (μl)

0 0 1,600 360 40 10

1 20 1,580 360 40 10

5 100 1,500 360 40 10

10 200 1,400 360 40 10

15 300 1,300 360 40 10

20 400 1,200 360 40 10

25 500 1,100 360 40 10

30 600 1,000 360 40 10

35 700 900 360 40 10

40 800 800 360 40 10

45 900 700 360 40 10

50 1000 600 360 40 10

55 1100 500 360 40 10

60 1200 400 360 40 10

65 1300 300 360 40 10
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9. Then they are flushed with distilled water and dried for 5 min in
the dark in an oven at 50 �C in an upright position.

10. The slides can be kept dry for about 6 weeks in cardboard
folders at RT in the dark.

3.4 Evaluation This is the most expensive part. The microscope can however be
shared at the beginning with other research groups. In our labora-
tory, we use a Nikon E600 fluorescence microscope (Nikon;
Tokyo, Japan; 40,000 €). We also use a Digital Microscope Camera
ProgRes® CFcool (7,000 €) and accompanying software (Jenoptik,
Jena, Germany). The color camera is necessary for documentation
and performance of multicolor FISH pictures to demonstrate the
spatial relationship between single microbial groups and to exclude
cross hybridizations of unrelated FISH probes.

True color micrographs are preferred because they approach
reality the most. However, evaluation of fluorescence signals based
on micrographs only should be discouraged. In contrast to material
composed of bacteria only, human samples contain complex DNA-
bearing structures, which may non-specifically bind the oligonu-
cleotides of FISH probes and make it difficult to distinguish them
from the bacteria-specific signals. While the human eye can easily

Table 3

Composition of wash buffer

% of formamide used

for hybridization

Final NaCl

concentration

(mM)

NaCl

5M (μl)

H2O

(ml)

Tris-HCl 1M

(pH 7.4) (μl)

SDS 10

% (μl)

EDTA

0.5M (μl)

0 900 9,000 40.0 1,000 30 0

1 900 9,000 40.0 1,000 30 0

5 636 6,300 42.7 1,000 30 0

10 450 4,500 44.5 1,000 30 0

15 318 3,180 45.8 1,000 30 0

20 225 2,150 46.4 1,000 30 500

25 159 1,490 47.0 1,000 30 500

30 112 1,020 47.5 1,000 30 500

35 80 700 47.8 1,000 30 500

40 56 460 48.0 1,000 30 500

45 40 300 48.2 1,000 30 500

50 28 180 48.3 1,000 30 500

55 20 100 48.4 1,000 30 500

Materials necessary:
l Lysozyme (Carl Roth, Germany)
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differentiate between real signal and biases, multiple irrelevant
signals may appear genuine in micrographs, especially when con-
trast and intensity are manipulated by software. The nuances are
imperceptible on micrographs taken with black and white fluores-
cence camera. The often used subsequent coloring of the signals is
deceptive.

3.4.1 Application of FISH:

The Enumeration of

Bacteria

Only hybridization signals which are clear and morphologically
distinguishable as bacterial cells with at least a triple color identifi-
cation with universal and group-specific FISH probes and DAPI
stain, in the absence of cross hybridization with taxonomically
unrelated probes, can be enumerated.

We enumerate bacterial concentrations of homogeneous popu-
lations visually in one of the square fields of the ocular raster
corresponding to 10 � 10 μm of the section surface at �1,000
magnification or 109 bacteria ml�1 (a 10 μl sample with a concen-
tration of 107 cells ml�1 has on average 40 cells per microscopic
field at a �1,000 magnification). In case of uneven distribution of
bacteria over the microscopic field, the amount of positive signals is
counted in ten fields of the ocular raster along the gradient of
distribution and divided by ten.

For microbial populations taking smaller surfaces than 10 � 10
μm, the above equation is adopted to a closer 1 � 1 μm raster.

In case of urine sediments, bacteria and epithelial cells must be
referred to the urine volume and each other. Concentrations of
epithelial cells within the 5 � 5 mm area of hybridization
(corresponding to the initial sample volume) are calculated and
converted to numbers of epithelial cells per milliliter of urine.
Since adherence is not even, it is recommended to determine the
maximal and mean numbers of adherent bacteria per epithelial cell.
The overall concentration of adherent bacteria in the urine results
from multiplication of the mean number of bacteria per epithelial
cell and the concentration of epithelial cells per ml of urine.

For possibilities of evaluation of ISH experiments in microbiol-
ogy by electron microscope, see chapter by Hannes Schmidt, Thilo
Eickhorst “Gold-FISH: In Situ Hybridization of Microbial Cells
for Combined Fluorescence and Scanning Electron Microscopy”.

4 Notes

1. Contrary to the expectations, none of the published FISH
probes that were tested in our lab proved to be absolutely
specific. Depending on the microbial community investigated
(e.g., human or animal intestines, pancreatic duct, gallstones,
biliary stents), all FISH probes demonstrated some cross-
hybridization when conditions of optimal stringency were
applied.
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2. Some FISH probes that delivered highly specific results in
human samples were cross hybridizing with unrelated probes
in murine material. This indicates that the global diversity of
bacteria is much higher than we presently accept.

3. When FISH probes for unrelated bacterial groups identify
bacteria of similar morphology and equal numbers and at simi-
lar locations, the specificity of signals should be evaluated by
performing multicolor FISH with probes stained with different
fluorochromes. When both micrographs are overlaid, the sig-
nals detected by both should not be the same [10].

4. The use of modified Carnoy in a higher ratio does not reveal
disadvantages, while a smaller volume increases the proportion
of water in the solution, resulting in a decreased quality of
hybridization.

5. After paraffin embedding, the fluorescence intensity declines
over time (10 % during each year of storage). The reduction of
30 % after 3 years can be critical for less numerous and meta-
bolically active microbial groups. Therefore, it is optimal to
perform comparative studies within the first 2 years.

6. The fixation step is followed by embedding in paraffin which is
time consuming.Microbiological cross contamination between
samples should be avoided by preparing each sample on its own
and by averting the use of an automated paraffin station.

7. Any hybridization oven can be used. When lacking such an
oven, a microbial incubator that is able to maintain the tem-
perature between 46 and 50 �C is an option.
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